1.引言
目前,電
磁流量計(jì)大多采用低頻矩形波叻磁方式,以使傳感器輸出信號(hào)獲得較一長(zhǎng)時(shí)間的平穩(wěn)段,保證其測(cè)*精度。當(dāng)測(cè)*漿液流*時(shí),由于漿液中的固體顆粒劃過電極表面,導(dǎo)致傳感器輸出信號(hào)跳變,該跳變即為漿液噪聲。研究發(fā)現(xiàn),漿液噪聲的特性滿足1 /f分布。所以,為了減小漿液噪聲對(duì)輸出信號(hào)的影響,要求提高勵(lì)磁頻率。然而,由于電磁流量計(jì)的勵(lì)磁線圈為感性負(fù)載,提高勵(lì)磁頻率將會(huì)造成勵(lì)磁電流在半勵(lì)磁周期內(nèi)的穩(wěn)定段變短,不利于流量的測(cè)量。 特別是當(dāng)勵(lì)磁線圈的電感位較大時(shí),若提高勵(lì)磁頻率,就有可能使勵(lì)磁電流無法進(jìn)入穩(wěn)態(tài),從而無法進(jìn)行流量的測(cè)量.國(guó)外大多采PWN反饋控制或在H橋低端設(shè)置恒流品體管來進(jìn)行恒流控制,。前一種方法的電流響應(yīng)速度較慢,且電流紋波較嚴(yán)重;后一種方法由于恒流控制電路會(huì)造成H橋低端電壓波動(dòng)較大,不利于H橋的開關(guān)控制。國(guó)內(nèi)生產(chǎn)企業(yè)大多采用國(guó)外較為落后勵(lì)磁技術(shù),勵(lì)磁電流在51 In、左右才進(jìn)入穩(wěn)態(tài),因此勵(lì)磁頻率難以提高,頻率多為2.5~5 Hz。為此,國(guó)內(nèi)也進(jìn)行了勵(lì)磁方法的相關(guān)改進(jìn)研究,提出了基于線性電源的勵(lì)磁控制方案,提出了基于高低壓電源切換的勵(lì)磁控制方案?;诰€性電源的勵(lì)磁控制方案僅適用于勵(lì)磁線圈電感值相對(duì)較小的傳感器的高頻勵(lì)磁。高低壓電源切換勵(lì)磁控制方案則由于采用更高壓電源加速電流響應(yīng)速度,能在一定程度上提高勵(lì)磁頻率。但是,披露的高低壓電源切換的勵(lì)磁控制方案,對(duì)于勵(lì)磁線圈電感位較大的傳感器,勵(lì)磁電流響應(yīng)速度難以進(jìn)一步提高,從而限制了勵(lì)磁頻率進(jìn)一步提高的可能。并且勵(lì)磁方向切換時(shí),勵(lì)磁線圈中儲(chǔ)存的電能全部由泄放電路消耗掉,能*利用率低,造成能*浪費(fèi)和電路溫升。特別是勵(lì)磁線圈電感值較大時(shí),電路能耗更大,不利于電路長(zhǎng)期穩(wěn)定工作。
2.勵(lì)磁控制方案設(shè)計(jì)
基于能量回饋和電流旁路的高低壓勵(lì)磁控制方案框圖如圖1所示,主要由高、低壓電源、能量回饋電路、高、低壓切換電路、恒流控制電路、電流旁路電路、H橋開關(guān)電路、檢流電路和勵(lì)磁時(shí)序
產(chǎn)生電路組成。
工作流程
在勵(lì)磁平穩(wěn)階段,勵(lì)磁線圈中的勵(lì)磁電流為穩(wěn)態(tài)設(shè)定值。遲滯比較電路控制高低壓切換電路,切換至低壓源作為勵(lì)磁工作電源,并切斷電流旁路電路。恒流控制電路在低壓供電的情況下通過H橋向勵(lì)磁線圈提供恒定電流。當(dāng)勵(lì)磁方向切換時(shí),勵(lì)磁線圈一首先對(duì)能*回饋電路放電,檢流電路檢測(cè)到的電流值瞬間為負(fù),從而切換高壓源作為勵(lì)磁工作電源,同時(shí)接通電流旁路電路,以屏蔽恒流控制電路。勵(lì)磁線圈中的能量.通過泄放回路,由能星回饋電路中的儲(chǔ)能電容儲(chǔ)存起來。此時(shí)電容兩端的電壓幅值超過輸入端的高壓源。待勵(lì)磁線圈能員泄放完成后,勵(lì)磁線圈中的電流減小為零并改變方向,能量回饋電路開始放電,將儲(chǔ)存的能星通過電流旁路電路和H橋直接回饋給勵(lì)磁線圈。待能覺回饋電路兩端電壓下降到高壓源電平狀態(tài)時(shí),由高壓源直接通過電流旁路電路和H橋?qū)?lì)磁線圈進(jìn)行勵(lì)磁控制.當(dāng)線圈中勵(lì)磁電流上升到設(shè)定的超調(diào)*時(shí),遲滯比較電路控制高低壓切換電路,切換低壓源作為勵(lì)磁工作電源并切斷電流旁路電路,然后由恒流控制電路開始對(duì)勵(lì)磁電流進(jìn)行恒流控制。
上一條:
電磁流量計(jì)傳感器電極結(jié)構(gòu)背景技術(shù)
下一條:
具有壓力檢測(cè)與顯示功能的水泥漿流量計(jì)裝置附